Shear wave speed recovery in sonoelastography using crawling wave data.
نویسندگان
چکیده
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.
منابع مشابه
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data.
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i....
متن کاملMuscle Tissue Characterization Using Quantitative Sonoelastography: Preliminary Results
A quantitative sonoelastographic technique for skeletal muscle tissue characterization is introduced. Experimental data was collected in both ex vivo bovine and in vivo human skeletal muscle tissue. Crawling wave sonoelastographic data was processed using a quantitative technique for estimating local shear wave speed distributions. Results on ex vivo skeletal muscle samples demonstrate shear wa...
متن کاملFeasibility of Two-Dimensional Quantitative Sonoelastographic Imaging
In this paper, a two-dimensional (2D) quantitative sonoelastographic technique for estimating local shear wave speeds from slowly propagating shear wave interference patterns (termed crawling waves) is presented. Homogeneous tissuemimicking phantom results demonstrate the ability of quantitative sonoelastographic imaging to accurately reconstruct the true underlying shear wave speed distributio...
متن کاملQuantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity.
A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. I...
متن کاملSonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials.
The authors have recently demonstrated the shear wave interference patterns created by two coherent vibration sources imaged with the vibration sonoelastography technique. If the two sources vibrate at slightly different frequencies omega and omega+deltaomega, respectively, the interference patterns move at an apparent velocity of (deltaomega/2omega)upsilon(shear), where upsilon(shear) is the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 128 1 شماره
صفحات -
تاریخ انتشار 2010